Identification in archaea of a novel D-Tyr-tRNATyr deacylase.
نویسندگان
چکیده
Most bacteria and eukarya contain an enzyme capable of specifically hydrolyzing D-aminoacyl-tRNA. Here, the archaea Sulfolobus solfataricus is shown to also contain an enzyme activity capable of recycling misaminoacylated D-Tyr-tRNATyr. N-terminal sequencing of this enzyme identifies open reading frame SS02234 (dtd2), the product of which does not present any sequence homology with the known D-Tyr-tRNATyr deacylases of bacteria or eukaryotes. On the other hand, homologs of dtd2 occur in archaea and plants. The Pyrococcus abyssi dtd2 ortholog (PAB2349) was isolated. It rescues the sensitivity to D-tyrosine of a mutant Escherichia coli strain lacking dtd, the gene of its endogeneous D-Tyr-tRNATyr deacylase. Moreover, in vitro, the PAB2349 product, which behaves as a monomer and carries 2 mol of zinc/mol of protein, catalyzes the cleavage of D-Tyr-tRNATyr. The three-dimensional structure of the product of the Archaeoglobus fulgidus dtd2 ortholog has been recently solved by others through a structural genomics approach (Protein Data Bank code 1YQE). This structure does not resemble that of Escherichia coli D-Tyr-tRNATyr deacylase. Instead, it displays homology with that of a bacterial peptidyl-tRNA hydrolase. We show, however, that the archaeal PAB2349 enzyme does not act against diacetyl-Lys-tRNALys, a model substrate of peptidyl-tRNA hydrolase. Based on the Protein Data Bank 1YQE structure, site-directed mutagenesis experiments were undertaken to remove zinc from the PAB2349 enzyme. Several residues involved in zinc binding and supporting the activity of the deacylase were identified. Taken together, these observations suggest evolutionary links between the various hydrolases in charge of the recycling of metabolically inactive tRNAs during translation.
منابع مشابه
Archaea recruited D-Tyr-tRNATyr deacylase for editing in Thr-tRNA synthetase.
Aminoacyl-tRNA synthetases (AARSs) are key players in the maintenance of the genetic code through correct pairing of amino acids with their cognate tRNA molecules. To this end, some AARSs, as well as seeking to recognize the correct amino acid during synthesis of aminoacyl-tRNA, enhance specificity through recognition of mischarged aminoacyl-tRNA molecules in a separate editing reaction. Recent...
متن کاملRecent Updates on DTD (D-Tyr-tRNATyr Deacylase): An Enzyme Essential for Fidelity and Quality of Protein Synthesis
During protein synthesis, there are several checkpoints in the cell to ensure that the information encoded within genetic material is decoded correctly. Charging of tRNA with its cognate amino acid is one of the important steps in protein synthesis and is carried out by aminoacyl-tRNA synthetase (aaRS) with great accuracy. However, due to presence of D-amino acids in the cell, sometimes aaRS ch...
متن کاملMetabolism of D-aminoacyl-tRNAs in Escherichia coli and Saccharomyces cerevisiae cells.
In Escherichia coli, tyrosyl-tRNA synthetase is known to esterify tRNA(Tyr) with tyrosine. Resulting d-Tyr-tRNA(Tyr) can be hydrolyzed by a d-Tyr-tRNA(Tyr) deacylase. By monitoring E. coli growth in liquid medium, we systematically searched for other d-amino acids, the toxicity of which might be exacerbated by the inactivation of the gene encoding d-Tyr-tRNA(Tyr) deacylase. In addition to the a...
متن کاملGEK1, a gene product of Arabidopsis thaliana involved in ethanol tolerance, is a d-aminoacyl-tRNA deacylase
GEK1, an Arabidopsis thaliana gene product, was recently identified through its involvement in ethanol tolerance. Later, this protein was shown to display 26% strict identity with archaeal d -Tyr-tRNA Tyr deacylases. To determine whether it actually possessed deacylase activity, the product of the GEK 1 open reading frame was expressed in Escherichia coli from a multi-copy plasmid. Purified GEK...
متن کاملHuman D-Tyr-tRNA(Tyr) deacylase contributes to the resistance of the cell to D-amino acids.
DTD (D-Tyr-tRNA(Tyr) deacylase) is known to be able to deacylate D-aminoacyl-tRNAs into free D-amino acids and tRNAs and therefore contributes to cellular resistance against D-amino acids in Escherichia coli and yeast. We have found that h-DTD (human DTD) is enriched in the nuclear envelope region of mammalian cells. Treatment of HeLa cells with D-Tyr resulted in nuclear accumulation of tRNA(Ty...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 281 37 شماره
صفحات -
تاریخ انتشار 2006